Freezing Point Depression and Boiling Point Elevation

For the following compounds, classify the elements in terms of

- metal/non-metal or polyatomic (you will need your periodic table)
- type of bonding (covalent or ionic),
- moles of particles in solution for 1 mole of solute.
- Assuming a 1 mole of the solute in 1 kg of water, rank the compounds from 1-8 in terms of lowest freezing point (1) and highest freezing point (8). Ties are also possible.

Compound	Metal/non-	Covalent or	Moles of	Rank (lowest
	metal	Ionic?	particles in	freezing point)
			solution	·
CH ₃ OH				
KCl				
CaCl ₂				
CH ₃ COCH ₃		·		
Na ₃ PO ₄				
$Fe(NO_3)_3$				
H_2O_2				
$Fe_2(SO_4)_3$,
LiF				·

Write out the equations for the dissolving of each substance below.

→	
\rightarrow	
· -	
\rightarrow	

Parts per Million And

Freezing Point Depression and Melting Point Elevation Notes

What is the concentration of $O_2(g)$, in parts per million, in a solution that contains 0.008 gram of $O_2(g)$ dissolved in 1000. grams of $H_2O(l)$?

An aqueous solution contains 300. parts per million of KOH. Determine the number of grams of KOH present in 1000. grams of this solution.
If 0.025 gram of Pb(NO ₃) ₂ is dissolved in 100. grams of H ₂ O, what is the concentration of the resulting solution, in parts per million?
Colligative Properties Any property of a solvent that changes when a is added to it. Depends only on the of solute particles in the solution Examples: Onic compounds have a effect than covalent.
Freezing Pointwhen solute is added to a solvent
Boiling Point when solute is added to solvent.
When ionic compounds are put in a polar solvent, what happens to them?

When molecular compounds are put in a polar solvent, what happens?